
CHAPTER 1

Introduction: Open Source Software
and the Digital Commons

In March of 2012, The Linux Foundation released a report entitled, ‘Linux
Kernel Development: How Fast it is Going, Who is Doing It, What They are
Doing, and Who is Sponsoring It’. The kernel is an essential part of an operating
system that facilitates communication between computer hardware and soft-
ware, and the Linux kernel development project is considered ‘one of the largest
cooperative software projects ever attempted’ (The Linux Foundation, 2012: 1).
Aside from a technical overview of how kernel development has changed over
time, the authors included a curious note in the report’s highlights: Microsoft
was one of the top 20 contributors to the kernel. This marks the first time that
Microsoft appeared as a top contributor, but it was not the only corporation in
the top 20. Other corporate contributors included Intel, IBM, Google, Texas
Instruments, Cisco, Hewlett-Packard, and Samsung, as well as others. The
Linux operating system is a form of Free (Libre) and Open Source Software, or
FLOSS, which allows users to freely study, use, copy, modify, adapt, or distrib-
ute the software. Why, then, would major corporations contribute directly to a
FLOSS project, especially when that project seemingly does not directly con-
tribute to corporate profits? This question becomes even more curious when
one considers that many of the companies contributing to the kernel not only
compete with one another in the market for information technology, but that
companies like Microsoft and Google are direct competitors with Linux in the
market for operating systems.

Indeed, Steve Ballmer, the Chief Operating Officer of Microsoft, once referred
to Linux as ‘a cancer that attaches itself in an intellectual property sense to eve-
rything it touches’ (Greene, 2001). Ballmer was referencing the GNU General
Public License, or GNU GPL, which is the most commonly used free software
license. The GPL grants users of GPL-protected software the right to study, use,
copy, modify, or adapt the software as they wish. In addition, users are granted
the right to redistribute the software, as well as a modified version, and the user

How to cite this book chapter:
Birkinbine B. J. 2020. Incorporating the Digital Commons: Corporate Involvement in Free

and Open Source Software. Pp. 1–32. London: University of Westminster Press. DOI:
https://doi.org/10.16997/book39.a. License: CC-BY-NC-ND 4.0

https://doi.org/10.16997/book39.a

2  Incorporating the Digital Commons

may even charge a fee for the modified version, provided that the distributor
does not place greater restrictions on the rights granted by the GPL. The GPL
does not preclude corporations from modifying free software or charging a fee
for their modified versions, but the corporation must still grant free software
rights to end users. Ballmer’s quote implies that free software is antithetical to
commercial software companies. If this were the case, then Microsoft and other
commercial software firms would have no incentive to contribute directly to
one of the largest open source projects.

Furthermore, consider the fact that Ballmer made his denunciation of Linux
on 1 June 2001. Merely 27 days later, on 28 June 2001, the United States Depart-
ment of Justice found Microsoft guilty of monopolistic business practices in
violation of the Sherman Antitrust Act primarily for bundling its Internet
Explorer web browser with its Microsoft Windows operating system to rap-
idly increase its share of the market for web browsers. However, Microsoft has
dramatically changed its position on Linux and open source since 2001, as sig-
nified by its inclusion in the top 20 contributors to the Linux kernel in 2012.
That same year, Microsoft created Microsoft Open Technologies, Inc., a wholly
owned subsidiary dedicated to facilitating interoperability between Microsoft
and non-Microsoft technologies, while promoting open standards and open
source. What changed during this 12-year period that Microsoft would so dra-
matically reposition itself in relation to FLOSS?

Microsoft is not alone. Indeed, corporate involvement in FLOSS has been
increasing, especially since about 2007–2008. Table 1.1 provides an illustration
of the companies that contributed to Linux kernel development for versions
4.8–4.13, which were released in 2017. The annual report for kernel develop-
ment that year identified 225 companies that contributed to the project. While
the Linux kernel is just one example of a FLOSS project to which corpora-
tions are contributing, other examples exist as well. This begs the question as to
what motivates these companies to contribute to FLOSS projects. Furthermore,
in what ways are they contributing to FLOSS projects? How do communities
of FLOSS developers negotiate corporate involvement in their projects? Do
communities of FLOSS developers have any recourse for unwanted corporate
involvement or influence in their projects?

1.1.  The Argument and Plan for the Book

The overall purpose of this book is to investigate the seemingly contradictory
relationship between FLOSS communities and for-profit corporations. Working
from a critical political economic perspective, I investigate the power dynam-
ics that exist between communities of FLOSS developers and the corporations
that sponsor FLOSS projects or appropriate the software production of FLOSS
labourers. After all, FLOSS products and the productive process that make
those products possible have been widely lauded as revolutionary changes that

Introduction: Open Source Software and the Digital Commons  3

enable greater degrees of freedom and autonomy on behalf of users and con-
tributors (Benkler, 2006; Raymond, 2000; Stallman, 2002). This project inter-
venes in these debates by tempering these claims. I position technology as a site
of social struggle, and I contextualise commons-based peer production within
a broader social context to illustrate how such production intersects with capi-
talist production. I do this by demonstrating how the purportedly revolution-
ary changes brought about by FLOSS and commons-based peer production are
now becoming incorporated into corporate strategies and corporate structures.

The central argument presented here is that free and open source software
is dialectically situated between capital and the commons. On the one hand,
communities of programmers are actively working to create software as digital
commons that can be accessed, used, adapted by others. By developing soft-
ware iteratively this way, the pace and scale of software production increases.
This represents a virtuous cycle whereby an association of software program-
mers actively contribute to a community that claims collective ownership over
FLOSS projects. As such, FLOSS programmers can be framed as commoners
insofar as they remain committed to ensuring the reproduction and sustainabil-
ity of commons-based software projects over time. On the other hand, capital
attempts to capture the value being produced by FLOSS communities. This
includes harnessing the processes (i.e. the collective labour, or commons-based

Table 1.1: Top Companies Contributing to the Linux Kernel, Versions 4.8–4.13
(Corbet & Kroah-Hartman, 2017: 14).

Company Changes Percent
Intel 10,833 13.1%
none 6,819 8.2%
Red Hat 5,965 7.2%
Linaro 4,636 5.6%
unknown 3,408 4.1%
IBM 3,359 4.1%
consultants 2,743 3.3%
Samsung 2,633 3.2%
SUSE 2,481 3.0%
Google 2,477 3.0%
AMD 2,215 2.7%
Renesas Electronics 1,680 2.0%
Mellanox 1,649 2.0%
Oracle 1,402 1.7%
Huawei Technologies 1,275 1.5%

4  Incorporating the Digital Commons

peer production power) involved in FLOSS production as well as commod-
ifying the products (i.e. specific FLOSS projects), which can provide a basis
upon which to commercially exploit the collaborative production occurring in
FLOSS communities.

This is not to say that the goals of the free software commoners and capi-
talist firms are always antagonistic. At times they are mutually beneficial, and
researchers have demonstrated how commercial sponsorship of FLOSS pro-
jects tends to make those projects more likely to attract developers and, there-
fore, ensures the project’s longevity (Santos, Kuk, Kon and Pearson, 2013).
However, we also have other examples of these relationships breaking down,
particularly when it concerns the unwanted encroachment of capital upon
commonly held resources like the digital commons. In these situations, the
interests of the FLOSS community diverge from those of a commercial sponsor,
and the relationship becomes antagonistic. The FLOSS community is faced not
only with the challenge of ensuring that their digital commons remain viable,
but also with ensuring that the project maintains the sense of community that
enabled the project to grow in the first place. How, then, to negotiate the rela-
tionship between their digital commons and the unwanted intrusion by capital
into their projects? There are a variety of factors to consider when attempting
to negotiate this relationship, and the subsequent chapters provide empirical
evidence for how these dynamics manifest.

The commons, generally, and the digital commons, more specifically, can be
understood as an alternative system of value that is emerging from within capital-
ism. At times, circuits of commons value can intersect with capital accumulation
circuits. Therefore, understanding the relationship between free software and
capital dialectically is useful for accounting for the contradictions between these
two forces that operate according to differing logics. Chapter 2 outlines these
differences more specifically by drawing on theories of capitalism, digital labour,
and the commons. The purpose is to develop a critical theory of the digital com-
mons by incorporating a critique of capitalism within theories of the commons.

In Chapters 3–5, I provide three detailed case studies that illustrate differ-
ent aspects of the dynamics between FLOSS communities and corporations. I
separate my discussion of corporate involvement in FLOSS into three thematic
areas, with each case study providing an exemplary case of these themes. The
three themes are processes, products, and politics. When considered together,
these three case studies are indicative of more general tendencies of corporate
involvement in FLOSS projects. Furthermore, each case study offers a nuanced
understanding of the complex way these dynamics work, and they allow for a
detailed unpacking of some of the contradictions inherent in the relationships.

To begin, Chapter 3 focuses on Microsoft’s contentious relationship with
FLOSS. This relationship is indicative of the ways in which the processes involved
in FLOSS production effectively ushered in a new era of industrial software
production. While other companies demonstrated a willingness to cooperate

Introduction: Open Source Software and the Digital Commons  5

with FLOSS communities, Microsoft’s dominance of the software market for
personal computing during the 1980s and 1990s makes it an instructive case
for understanding how software production changed over time. The major his-
torical event here is the antitrust ruling against Microsoft, which marked the
end of an era in which software production was largely accomplished within a
single firm that sought to exclude others from accessing its code. Indeed, one of
the consent decrees in the Microsoft antitrust ruling was that Microsoft provide
third parties access to its application programming interfaces (APIs). This was
a radical departure from Microsoft’s earlier practices, whereby the firm rose to
power by using anticompetitive business practices.

Coinciding with Microsoft’s dominance of the software market and its even-
tual antitrust conviction in the 1990s were other software firms trying to find
a way to transform FLOSS products into successful commercial products.
My analysis of Red Hat, Inc. in Chapter 4 is indicative of how FLOSS prod-
ucts get incorporated into a commercial firm’s overall business strategy. Red
Hat remains the largest and only publicly traded company providing software
and services that are completely based on free software. As such, Red Hat can-
not rely on traditional copyright protections to exclude others from using the
underlying source code included in its software. Thus, my analysis of the firm
explores how Red Hat has been able to create a profitable business based on
free software.

Finally, the third case study in Chapter 5 focuses on how FLOSS communities
cope with unwanted corporate influence in their projects. Sun Microsystems
was an important corporate sponsor of FLOSS projects, but it was acquired by
the Oracle Corporation, which had different plans for those projects. In that
chapter, I focus on the diverse destinies of three such projects – the Open-
Solaris operating system, the MySQL relational database management system,
and the OpenOffice productivity software – and the ways that the communities
involved in those projects resisted Oracle’s encroachment into their projects.
In effect, the case study illustrates the politics involved in negotiating bounda-
ries between FLOSS communities and corporations, while also demonstrating
some of the strategies FLOSS communities can use to protect their projects.

In the remainder of this introduction, I provide more context for under-
standing the significance of FLOSS. This includes historically situating FLOSS
within a broader discussion of the commons, as well as some of the key his-
torical moments in the development of software, generally, and FLOSS, more
specifically. In each of these sections, I also offer some notes on the terminol-
ogy used throughout the book, which will hopefully assist in avoiding concep-
tual confusion. Following those sections, I discuss the cultural significance of
FLOSS. I conclude the chapter with a note on the methodology used for the
current study. Readers who are already familiar with the history of FLOSS and
its defining characteristics may wish to skip directly to the next chapter or the
note on methodology at the end of this chapter.

6  Incorporating the Digital Commons

1.2.  Situating Free (Libre) and Open Source Software

Although free software and open source communities are related and, in some
cases, not mutually exclusive, each of them has distinct characteristics that
can best be described by reference to the ethos underlying each movement. To
contextualise the emergence of FLOSS within the evolution of the computing
and software industries, a brief history of these industries is provided below.
Following that discussion, I focus on situating two key figures associated with
FLOSS within their historical context: Richard Stallman and Linus Torvalds.
These two figures represent free software and open source, respectively.

1.2.1.  Historicising Free and Open Source Software

The use of machines for processing information or calculating differences in
numbers, human beings performed such work. But human calculations were,
at times, prone to errors. To reduce this uncertainty, Charles Babbage, a phi-
losopher and mathematician working at the University of Cambridge in 1822,
proposed that it was ‘only by the mechanical fabrication of tables that such
errors can be rendered impossible’ (Gleick, 2011: 95). Such was the proposi-
tion for Babbage’s Difference Engine, which performed routinised calculations
mechanically, and was arguably the genesis for modern computers as we know
them today. Later, Babbage expanded on his idea and planned a new type of
machine that was capable of being controlled by instructions that could be
encoded and stored to facilitate operation. The new iteration of the idea was
called the Analytical Engine, but this still only provided the idea for the hard-
ware or mechanisms necessary for such processes to occur. What was needed
for this hardware was software.

The idea for software arguably originates with Augusta Ada Byron King, the
Countess of Lovelace, otherwise known simply as Ada Lovelace. In 1843, she
developed the idea that Babbage’s Analytical Engine could perform a series of
operations beyond the mere calculation of numbers. By abstracting from the
differences between two things, Lovelace posited that the Analytical Engine
could be programmed to perform operations that relied on symbols and mean-
ings, which, in turn, could be communicated to the machine. Although Love-
lace’s idea was never realised in her lifetime, she is credited with developing the
idea for software and is known as the first programmer.

While Babbage and Lovelace are credited as pioneers in developing the ideas
for modern computers and software, the construction of such machines did not
begin until World War II. Developments in the field of computer science and
information theory – like Kurt Gödel’s incompleteness theorem, Alan Turing’s
idea for a Universal Turing Machine, Claude Shannon’s mathematical theory of
communication, and Norbert Wiener’s cybernetics – provided the intellectual
inspiration for the development of such machines. Before, during, and after

Introduction: Open Source Software and the Digital Commons  7

World War II, many of the developments leading to modern computers were
used for military purposes. Most notable, perhaps, were the German Enigma
machine that was used to encrypt secret messages and the electromechani-
cal bombes used by the United Kingdom to decipher those messages (Smith,
2011). However, in 1941, Konrad Zuse, a German electrical engineer, built
the Z3, which is regarded as the first electro-mechanical, programmable, fully
automatic digital computer (Zuse, 1993). The first comparable computer in the
U.S. was developed by John Atanasoff at Iowa State University in 1942 (Cope-
land, 2006). Only one year later, the first fully functioning electronic digital
computer was put to use by the cryptanalysts working at Bletchley Park in the
U.K. as part of the Government Code and Cypher School. The Colossus, as the
new machine was known, was programmed to decipher German communica-
tions during the war. By the end of the war, Bletchley Park had 10 Colossi work-
ing to decode German communications (Copeland, 2006).

Following these initial landmarks, the development of modern computers
accelerated as many of the early pioneers began working for academic institu-
tions and private companies after the war. In the United States, Grace Hopper,
who served in the United States Navy Reserves as a member of the Women
Accepted for Voluntary Emergency Service (WAVES) during World War II,
was assigned to the Bureau of Ships Computation Project at Harvard Univer-
sity. While there, she worked on the Mark I computer project, which was built
by IBM in 1944. Later, after she began working for private companies, Hop-
per popularised the idea of machine-independent programming languages.
This led to the development of the Common Business-Oriented Language
(COBOL) in 1959. Hopper is also credited with popularising ‘debugging’ as a
term for removing defective material or code from a program. While Hopper
may not have invented the term, she popularised it by literally removing a moth
from a Mark II computer at Harvard University after it had caused the machine
to short circuit (Deleris, 2006).1

During the 1960s, the creation of microprocessors drastically reduced the
cost of computing. As a result, communities of hobbyist programmers and
computer enthusiasts began to experiment with the technology in the follow-
ing years. One notable example was the Homebrew Computer Club, started by
Gordon French and Fred Moore in 1975 at the Community Computer Center
in Menlo Park, California. The club provided an open forum for hobbyists to
trade parts and advice about the construction of personal computers. The goal
was to make computers more accessible to others. More will be said about this
specific hobbyist community in Chapter 3, as it played an important role in
the rise of Microsoft. Aside from these hobbyist communities, the majority of
computer development occurred within the military, academic institutions,
and private companies.

Most notable were the initial developments within the Defense Advanced
Research Projects (DARPA), which was created in 1958, as well as the Artificial
Intelligence Lab at the Massachusetts Institute of Technology (MIT), which was

8  Incorporating the Digital Commons

founded in 1970.2 Programmers working at the time were using a proprietary
programming language called Unix, the intellectual property rights for which
were owned by AT&T. One of the programmers working at MIT was Richard
Stallman, who began working in the lab in 1971. Stallman found that when he
wanted to work with the Unix programming language outside of officially sanc-
tioned spheres, he was denied access to the code by AT&T. In protest, he posted
messages to computer-based bulletin boards in 1983 announcing that he was
developing a Unix-based language that would be available for free so that oth-
ers could use the language however they saw fit. In 1985, Stallman published
‘The GNU Manifesto’, which outlined the goals of his new project, his reasons
for developing the project, and what the project was aimed at fighting back
against.3 The programming language was called ‘GNU’, a recursive acronym
standing for ‘Gnu’s Not Unix’. Along with the programming language, Stallman
developed the GNU Public License (GPL), which stipulated that anyone could
access the source code for free, and that anyone using the GPL agreed to make
their contributions available under the same conditions. This would ensure that
computer programmers could freely share their work with one another, thereby
creating a common form of property that developed in opposition to its propri-
etary and closed counterparts.

Stallman became the figurehead of the movement against proprietary soft-
ware. He viewed access to source code as a fundamental right, which he wanted
others to believe in as well. He summed up this view in his famous dictum, ‘Free
as in freedom, not as in free beer’, thus positioning free software as a moral right
(Stallman, 2002). The free software definition stipulates that ‘users have the
freedom to run, copy, distribute, study, change and improve the software’ (Free
Software Foundation, 2012). As the principles of free software grew beyond the
borders of the U.S., others have tried to reduce the confusion over the English
term ‘free’ by using the French term libre rather than gratis. Stallman estab-
lished the Free Software Foundation (FSF) to promote his movement against
proprietary software, and he represents an impassioned counter-cultural figure
who continues to espouse his free software philosophy.

While Stallman is generally considered to be the figurehead of the free soft-
ware movement, open source software is generally associated with Linus Tor-
valds. In many ways, Torvalds and Stallman have similar stories, but differ on
philosophical terms. During the 1980s, free software projects were being devel-
oped but generally on a smaller scale. Free software had not yet found a way to
coordinate efforts on a larger scale. Torvalds wanted to work on kernel develop-
ment for an open-source operating system. Rather than relying on numerous
programmers all working independently on such a task, Torvalds released the
source code for his project, which he was calling ‘Linux’, a portmanteau of his
name, Linus, and the language he was working with, Minix (itself a simplified
derivative of AT&T’s Unix). Torvalds suggested that anyone who was interested
in contributing to such a project was encouraged to do so, if they released their
work back to the community so that others could progressively work toward

Introduction: Open Source Software and the Digital Commons  9

completing the kernel. The project proved to be successful, and eventually led
to the creation of the open source operating system, Linux. Coordinating such
a large-scale programming project was accomplished by asking those working
on the code to release their work, no matter how small the changes seemed.
The rationale was that coordinated efforts reduce the amount of redundant
work, which was summed up in the adage ‘with many eyes, all bugs are shallow’,
which Eric Raymond refers to as ‘Linus’s Law’ (Raymond, 2000).

Stallman and Torvalds differ with respect to how they view the relationship
between free software and proprietary software. Whereas Stallman tends to be
somewhat more confrontational in his opposition to proprietary software, Tor-
valds is less so. Williams (2002) describes a decisive moment at a conference
in 1996 where Stallman and Torvalds appeared on a discussion panel together.
Torvalds expressed admiration for the work that Microsoft was doing and
suggested that free software advocates could work together with companies.
Such a suggestion was generally seen as taboo since Stallman was perceived
with esteem by the programming community, and the Free Software Founda-
tion generally took a very adamant stance against proprietary software com-
panies. Powell (2012) frames this distinction between free software and open
source similarly:

open source software as an industrial process grew out of the culture of
free software development, but departed from the latter’s political focus
on the value of sharing and the maintenance of a knowledge commons,
and instead focused on the efficiency of open source processes for soft-
ware production (692).

This moment at the 1996 conference thus marked a watershed moment in which
the fervour of the free software movement thawed a bit, as Torvalds came to
represent a more liberal approach to free software. By ‘liberal’ here, I am refer-
ring to the literal definition rather than a specific political position; the term
should be understood as something that indicates an openness to new perspec-
tives or behaviours while willing to abandon traditional values. In this regard,
Linus’s expression of support for the work that Microsoft was doing signalled
an openness to working with Microsoft (or other commercial firms) simply to
produce the best software rather than an adherence to the anti-corporate stance
of Stallman and the Free Software Foundation.

In sum, then, we can understand the free software and open source move-
ments with respect to these differing philosophical positions. Stallman and
free software advocates tend to make moral claims against supporting pro-
prietary software, while Torvalds and open source tend to be associated with
a more liberal and inclusive stance. While Stallman and Torvalds have been
used to illustrate the differences between free software communities and open
source communities, they should not be viewed as mutually exclusive com-
munities, nor should they be seen as representative of the entire free software

10  Incorporating the Digital Commons

and open source communities. One of the peculiarities of the free and open
source software community is that, although the overall community is united
in their belief that software ought to be free for users to study, modify, adapt,
or customise, its members will often vehemently defend their preferred free
software project while deriding others. In a sense, this signals to others where
their loyalties lie and engenders stronger ties within niche communities that
exist within the larger FLOSS community. The present project is less con-
cerned with these intra-group fissures than the relationship of the commu-
nity to the corporations that rely on their labour. To that end, the combined
term ‘Free (Libre) and Open Source Software’ or ‘FLOSS’ is used to refer to the
overall community.4

1.2.2.  The Unseen Ubiquity of Free and Open Source Software

From its beginnings in the 1980s and 1990s, FLOSS has proved to be an effi-
cient and effective way of producing software. Whether we realise it or not,
most of us rely on FLOSS in our everyday computing, as it provides critical
infrastructure that enables the Internet to function. As an example of the size
and scope of some FLOSS projects, consider the Linux kernel, which was
discussed in the introduction to this chapter. When it was first released in
1991, the Linux kernel featured approximately 10,000 lines of code. Version
4.13 of the Linux kernel was released in September 2017 and featured nearly
25 million lines of code, which was produced by nearly 1,700 developers and
225 companies (Corbet and Kroah-Hartman, 2017: 11). Furthermore, Linux
has become widely used as an operating system. For example, Linux (or other
operating systems derived from Linux) holds 100% market share in the market
for supercomputer operating systems (Top500.org, 2018a). These computers
are the most powerful computers in the world, and all of them rely on Linux or
Linux-based operating systems. This includes the United States Department of
Energy’s supercomputer at the Oak Ridge National Laboratory in Oak Ridge,
Tennessee, which at the time of writing is home to the world’s fastest and most
powerful supercomputer (Top500.org, 2018b).5 While Linux does not yet have
a significant share of the personal computing desktop market, the operating
system has been customised and used within a variety of contexts.

Within the United States, Linux is used for high-level military operations.
For example, the United States Navy announced that its $3.5 billion warship,
the USS Zumwalt, which has been described as ‘the most technologically
advanced surface ship in the world’, will effectively serve as an armed floating
data centre that features server hardware running various Linux distributions
and more than 6 million lines of code (Mizokami, 2017, Gallagher, 2013). In
addition, the International Space Station switched from the Windows operat-
ing system to Debian Linux, according to Keith Chuvala, the Manager of Space
Operations Computing at NASA, because they wanted to have ‘…an operating

Introduction: Open Source Software and the Digital Commons  11

system that was stable and reliable – one that would give us in-house control’
(Bridgewater, 2013).

Indeed, Linux and Linux-based systems also provide essential components
for some of the most recognisable technology companies, which was discussed
briefly at the beginning of this chapter. Despite the fact that I have only selected
a few companies for detailed examination in the subsequent chapters, one
could find other similarly intriguing case studies that would exemplify different
dynamics between corporations and FLOSS communities. As such, it is worth
mentioning some notable examples here simply to emphasise the ubiquity of
Linux. Google’s Android operating system, for example, is one of the world’s
most popular mobile platforms, and it is based on the Linux kernel. However,
there are certain key components of the Android operating system that remain
proprietary to Google (see Amadeo, 2018). Aside from Google, other compa-
nies like Canonical rely on Linux for creating customised operating system dis-
tributions. Canonical produces Ubuntu, which is one of the most widely used
Linux distributions.

Linux has also seen widespread adoption around the world. Some countries
have developed their own versions of Linux to meet specific needs, and some
cities have even required that Linux be given preference over other operat-
ing systems. For example, between 1999–2001, four cities and municipalities
in Brazil – Amparo, Solonópole, Recife, and Ribeirão Pires – passed laws that
required government agencies to use or give preference to Linux (Tramon-
tano and Trevisan, 2003; Festa, 2001). The decision to switch to free software
systems was mainly economic, as Brazil reported spending nearly $1 billion
on software licensing fees to Microsoft between 1999–2004 (Kaste, 2004). By
switching to free and open source software, Brazil estimated that they could
save approximately $120 million per year (Kingstone, 2005). Brazil remains one
of the more progressive countries in its support of free software (see Birkinbine,
2016a; Schoonmaker, 2018; 2009). Many of the country’s policy measures and
initiatives related to FLOSS have been driven by communities of activists who
have been able to intervene in policymaking processes to institute policies that
seem to contradict the prevailing neoliberal ideology. In an excellent article on
the subject, Shaw (2011) framed these activists as insurgent experts.

Similar measures to support free software were taken in Kerala, India, as the
state adopted a policy to remove proprietary software from its educational sys-
tem. According to one estimate, the switch saved the state of Kerala roughly
$58 million each year (Prakash, 2017). The German city of Munich developed
its own version of Linux called LiMux (Linux in Munich), which it used as an
operating system for its 15,000 city council members before announcing a shift
back to Microsoft in 2017 (Heath, 2017). The National University of Defense
Technology in China has also developed its own Linux-based operating system
called Kylin. In addition, the computers used for the One Laptop Per Child
project, which was founded with the goal of bringing low-cost computers to
developing countries for educational purposes, featured a free and open source

12  Incorporating the Digital Commons

operating system based on Fedora, the free software project sponsored by Red
Hat, Inc., which will be discussed in Chapter 4.

Beyond the increasing use of Linux, open-source principles have been used
in areas outside of information technology. For example, open source hard-
ware (see Söderberg, 2011) can increase access to physical goods, including
furniture, musical instruments, construction materials, and wind turbines for
generating renewable energy. Such projects are particularly attractive to those
living in developing countries, where access to information, goods, and ser-
vices may be restricted or limited. One of the more ambitious projects in this
area is the Open Source Ecology project, which offers ‘open source blueprints
for civilization,’ and includes instructions for building industrial machines with
recycled or low-cost materials (Open Source Ecology, 2019). While this is just
one notable example, it demonstrates the optimism and creativity involved in
applying open source principles to a whole way of living rather than simply
information technology. However, the core values inherent in these projects do
not necessarily originate in open source software. Rather, the cultural values of
openness, sharing, mutual aid, respect, and conviviality are foundational values
for building a community. When applied on a broader scale, these principles
hold the promise of a more sustainable future, especially when such principles
are linked with environmental and ecological preservation practices. But these
principles only become radical propositions in a system that discourages or
provides little incentive for valuing them.

Despite the fact that FLOSS communities comprise a socio-technical system
insofar as their activities are made possible by and exist within a technologi-
cally mediated realm, FLOSS enthusiasts also congregate and cooperate in-
person through a network of Linux User Groups (LUGs) around the world.
Regular meetings of LUGs are held to promote FLOSS, to assist new users
with installing FLOSS, to troubleshoot any issues that may arise when using
FLOSS, or to simply meet other people interested in FLOSS. In this sense, the
social connections that exist within these groups are mediated by their mutual
interest in technology. Because members of the FLOSS community are brought
together by their mutual appreciation of technology, their cultural practices
depend upon and are supported by interconnected network technologies. As
more people become connected to the network, the opportunities for addi-
tional participants in these communities grow.

One final point deserves attention here too. It seems like an increasing
amount of our social lives is spent on the Internet where we work, communicate
with friends and colleagues, read news, watch movies and television, and listen
to music, among other activities. When we connect to the Internet and visit
websites, our requests for information are relayed through a network of inter-
connected servers that facilitate communication between other clients on the
network. The operating systems running those servers are increasingly FLOSS
projects like Linux or FreeBSD, but Microsoft also designs server software.
This provides another example of FLOSS projects competing with proprietary

Introduction: Open Source Software and the Digital Commons  13

companies like Microsoft. Consequently, and whether we realise it or not, our
ability to connect to the Internet may depend, in part, on the ability of FLOSS
projects to work together with proprietary software. This further demonstrates
the need for understanding the ways in which proprietary software and FLOSS
projects work together, as well as what happens when these relationships break
down. Unpacking the dynamics that exist in these relationships can help us
understand either the enabling or constraining of our ability to connect with
others online.

What these examples should illustrate is that Linux but also FLOSS more
generally has become more than just a tool used within the computer hobbyist
community. Its widespread and increasing adoption across the globe within a
variety of high-level contexts demonstrates the power of the FLOSS produc-
tion model as well as the effectiveness of its products. As FLOSS continues to
be used within an increasing variety of contexts, understanding the ways in
which corporations, governments, non-profit organisations, and other types of
institutions are involved in FLOSS projects will become increasingly important.
Therefore, FLOSS provides an important area for research not just because of its
increasing ubiquity, but also because of the claims that have been made about
the democratic, egalitarian, and non-market characteristics of its products and
processes. This is precisely how this project seeks to contribute to such debates.

1.2.3.  FLOSS and Hacker Culture

The term ‘hacker’ has taken on negative connotations recently, but the term is
generally used to describe anyone who ‘tinkers’ with or makes changes to tech-
nology to create something new. Steven Levy (1984) outlined the principles of
the hacker ethic. Among other elements, Levy claimed that computers can be
used for creative purposes, hackers ought to be judged by the quality of their
work rather than any other characteristic (gender, race, ethnicity, etc.), and that
having the ability to hack is a prerequisite for hacking. This last caveat may
seem obvious but, in order to perform a hack, a hacker must have access to the
technology (in this case, the source code). In other words, closed, proprietary
technologies that do not allow for tinkering may be viewed as unjust.

Indeed, when faced with closed, proprietary, or otherwise secured tech-
nologies, a hacker may attempt to circumvent or remove those restrictions. At
times, this is done to make a point about information security, but it is also
done to signal to others that they deserve credit for the sophistication of their
hack. This signalling motivation is also recognised within open source software
communities (Lakhani and Wolf, 2005), especially because FLOSS program-
mers are interested in remixing, modifying, adapting, or creating something
new from a given product. The same signalling motivation has been used to
understand why programmers contribute to FLOSS projects. Lakhani and Wolf
(2005) explain that signalling can take place within at least a couple of levels. At

14  Incorporating the Digital Commons

the level of the individual, a single hacker may perform a hack to signal his or
her skills to others. Hackers might also use this type of signalling to communi-
cate their skills to potential employers to secure paid employment. Gaining rec-
ognition within the broader community for performing certain programming
tasks effectively can translate into increased job opportunities with companies
looking for specific skills.

However, a different type of signalling takes place between groups of hack-
ers. Groups or collectives may signal their prowess to others by shutting down
a web site or otherwise disrupting services. Often, this is done in the spirit
of competition, but can also be explicitly driven by a particular ideology. For
example, nationally based hacker groups can be found in Syria where a pro-
Syrian government hacking group called the Syrian Electronic Army has waged
hacking battles against the pro-rebel hackers associated with the Free Syrian
Army (Fitzpatrick 2012). In these situations, hacker groups strategically target
the web sites of their opponents to signal the strength of their movement.

Although the signalling appears to be the most prevalent motivation, Weber
(2004) identifies other motivations as well. In a survey of self-identified hack-
ers, respondents reported their primary motivation for contributing to FLOSS
development was a desire to challenge oneself and perform creative work. This
seems to support what Levy (1984) identified as primary tenets of the hacker
ethic: creativity and aesthetics. Weber (2004) also found additional motiva-
tions reported in the survey, including the belief that all software should be
free, which echoes the philosophy of Richard Stallman and the Free Software
Foundation. Weber concludes that motivations are diverse and that the results
from these surveys need to be properly contextualised. For instance, many con-
tributors to FLOSS development do not disclose their identity or any institu-
tional affiliation. Indeed, a look at the credits file for users contributing to the
development of the Linux kernel shows that most contributors are listed in the
‘unknown’ category. This means that a large portion of the FLOSS community
simply chooses not to self-identify. Therefore, the results of any survey that
claims to represent the entire FLOSS community must be approached some-
what sceptically.

While signalling and creativity are certainly important factors for under-
standing the motivations of hackers and FLOSS contributors, my own view is
that the most robust scholarship on the cultural significance of free software
and FLOSS production comes from Christopher Kelty. Kelty (2008) positions
free software as a recursive public, which he defines as:

a public that is vitally concerned with the material and practical mainte-
nance and modification of the technical, legal, practical, and conceptual
means of its own existence as a public; it is a collective independent of
other forms of constituted power and is capable of speaking to existing
forms of power through the production of actually existing alternatives
(Kelty, 2008: 3).

Introduction: Open Source Software and the Digital Commons  15

In other words, in the process of actively contributing to FLOSS projects, FLOSS
programmers actively create, recreate, or reproduce the infrastructure that ena-
bles their activity to take place. This has conceptual links with other theories
of the commons that position the commons as a process or a way of becom-
ing (Dyer-Witheford, 2006; Linebaugh, 2008; Singh, 2017). Similarly, Rossiter
and Zehle (2013) argue the commons are not purely ‘given as a fragile herit-
age to be protected’ against enclosure, but they must be actively constructed.
FLOSS communities actively produce the digital commons as code, which is
produced and licensed under intellectual property licenses that permit users to
use the code and adapt it for their own purposes. These alternative intellectual
property licenses take many different forms. The original copyleft licence to see
widespread use was the GNU General Public License.6 Other notable examples
are the Creative Commons7 licences, which allow varying levels of use for the
protected property under conditions set by the creator. For example, users may
make their creation freely available and permit others to use it, if those users
provide attribution to the original author.

Kelty (2008) furthermore claims that FLOSS programmers ‘do not start with
ideologies, but instead come to them through their involvement in the practices
of creating Free Software and its derivatives’ (7–8). Coleman (2004) makes similar
claims when she refers to the ‘political agnosticism’ of FLOSS. The complex forces
at play in this agnosticism stem from an outward denial of specific political affilia-
tions even while ‘political denial is culturally orchestrated through a rearticulation
of free speech principles, a cultural positioning that simultaneously is informed
by the computing techniques and outwardly expresses and thus constitutes hacker
values’ (Coleman, 2004: 509). Coleman continues by explaining that the core of
the moral philosophy espoused by the FLOSS community is a ‘commitment to
prevent limiting the freedom of others’ (509). This utilitarian ethic of openness is
what is necessary for FLOSS programmers to continue building state-of-the-art
computer programs because it is precisely the ability to tinker, adapt, and improve
upon software that enables innovation to occur within software development.

These principles, as well as the outward denial of a specific political posi-
tion, are, in part, what has enabled the FLOSS community to attract such a
large community. Of course, this is not to say that all members of the FLOSS
community reject specifically political ideologies. One needs to look no further
than Eben Moglen’s (2003) ‘dotCommunist Manifesto’, which offers a polemic
against the regimes of private property. Indeed, he concludes the manifesto
with the following seven principles in the struggle for ‘free speech, free knowl-
edge, and free technology’ as well as a concluding note on how this struggle will
bring about a more just society:

1.	 Abolition of all forms of private property in ideas.
2.	 Withdrawal of all exclusive licences, privileges and rights to use

electromagnetic spectrum. Nullification of all conveyances of per-
manent title to electromagnetic frequencies.

16  Incorporating the Digital Commons

3.	 Development of electromagnetic spectrum infrastructure that im-
plements every person’s equal right to communicate.

4.	 Common social development of computer programs and all other
forms of software, including genetic information, as public goods.

5.	 Full respect for freedom of speech, including all forms of technical
speech.

6.	 Protection for the integrity of creative works.
7.	 Free and equal access to all publicly produced information and all ed-

ucational material used in all branches of the public education system.
By these and other means, we commit ourselves to the revolu-

tion that liberates the human mind. In overthrowing the system of
private property in ideas, we bring into existence a truly just society,
in which the free development of each is the condition for the free
development of all.

(Moglen, 2003)

Similarly, Dmitry Kleiner’s (2010) Telekomunist Manifesto outlines proposals
for developing a working class politics online. His proposals for venture com-
munism as well as a copyfarleft licensing regime offer concrete proposals for
developing alternatives within existing frameworks, but doing so in a way that
is guided by radical politics. Both of his proposals are aimed at preserving and
protecting the commonly held property of independent producers from capi-
talist exploitation or co-optation.

It is precisely because the collective productive activity of the FLOSS com-
munity is so valuable for software production that capitalist firms are inter-
ested in harnessing this power. At the same time, this is also the reason that
critical scholars like Kleiner have sought ways to preserve that value within
the communities who create such value, even if they offer different propos-
als for how to do so. Taken as a whole, then, this community holds tremen-
dous value for software production. The authors discussed above, particularly
the work of Kelty (2008) and Coleman (2004; 2013), offer some of the best
work for understanding the cultural significance of FLOSS as well as the ethics
underlying the FLOSS community. However, there is still the pressing question
of what happens when the specific cultural, political, and economic values of
the FLOSS community intersect with circuits of capital accumulation. This was
one of the tensions that Kleiner (2010) was trying to address when developing
his proposals for alternatives. Moreover, in what ways does the FLOSS com-
munity negotiate and justify the dual position of advocating for open knowl-
edge and market success simultaneously? Some of the best work exploring the
complex set of dynamics at work in this regard has been that of Alison Powell
(2012; 2016; 2018). In exploring the ways that participants in peer produc-
tion communities negotiate competing moral visions for their projects, Powell
(2018) argues that participants often engage in ‘operational pragmatics’ that
are used to justify various design decisions. In doing so, participants collapse

Introduction: Open Source Software and the Digital Commons  17

distinctions between advocacy for open knowledge and market success even
if these distinctions seem to be at odds with one another. In effect, both are
viewed as ‘good’ or virtuous, that function as ‘regimes of justification’ when
making decisions about design (Powell, 2018: 514).

How, then, can we understand these complex and intertwined ways of nego-
tiating cultural differences both within peer production communities as well as
their intersection with capital accumulation circuits? Is it possible for peer pro-
duction communities to be exploited by capital if they are willing participants
in designing products for market success? After all, corporations are keenly
interested in harnessing the productive power of the FLOSS community. The
following section discusses one way to theorise the ways in which companies
relate to FLOSS communities. However, the following chapter will discuss these
specific dynamics in greater detail by drawing from theories of capitalism, digi-
tal labour, and the commons, while exploring the ways in which exploitation
occurs when capital and the commons intersect.

1.3.  Open Source Business Models

The previous section demonstrates how the specific cultural dynamics at play
in FLOSS communities have been explored quite effectively by other schol-
ars, including the significance of those dynamics for cultural production more
broadly. However, the economic arrangements between corporate firms and
FLOSS communities have been explored comparatively less. This book aims
to offer some greater descriptive detail as to how these dynamics specifically
manifest as FLOSS communities and corporations negotiate the boundaries
between their respective organisations. However, one attempt to develop a
typology of open source business models is worth mentioning here.

As part of their broader treatment of open source software, Deek and
McHugh (2008) develop a typology of open source business models. The typol-
ogy contains five different models that have been used in trying to profit from
FLOSS. Table 1.2 provides an illustration of this typology, providing the types
of business strategies employed, a description of the strategy, and an example of
a company or product that is representative of the strategy.

The first business model relies on dual licensing, in which the owner of copy-
righted software provides free and open distributions for non-profit users but
requires for-profit customers to pay a fee to use the software. The exemplary
case here is MySQL, which is an open source database management system.
The company provides a free version of its software under the General Public
License (GPL), which stipulates that any derivative software using the GPL-
licensed software must also be made available under the same licence. MySQL
also provides an advanced commercial version of its software to for-profit cor-
porations, which can be customised to the users’ specific needs or integrated
with that company’s proprietary software.

18  Incorporating the Digital Commons

Table 1.2: Types of Open Source Business Strategies, adapted from Deek and
McHugh (2008: 272).

Business Strategy Description Examples
Dual Licensing Owner of copyrighted software

provides a free and open
distribution for non-profit
users but requires for-profit
customers to pay a fee to use the
software.

MySQL

Consulting Company assists other
companies with planning,
strategy, and implementing
appropriate open source
solutions within their business.

Olliance Consulting
(division of Black
Duck Software), LQ
Consulting

Distribution & Services Company provides services
for non-expert computer users
by handling the compilation
of stable, updated, and
prepackaged software suites that
are distributed to users (clients).

Red Hat, Canonical

Hybrid open/
proprietary – Vertical
Development

Using open source as a base
upon which proprietary
software can be built.

Google

Hybrid open/
proprietary – Horizontal
Arrangements

For-profit company becomes
directly involved in supporting
open source projects to
supplement its own business
operations.

IBM, Microsoft

The second type of business model is one in which a company provides con-
sulting services for FLOSS. Quite simply, companies that adopt this model
assist other companies with planning, strategy, and implementing appro-
priate open source solutions within their business models. Among other
things, Black Duck Software provides consulting services through its Olliance
Consulting division.

The third business model is one in which a company provides FLOSS dis-
tributions and services, and the exemplary company here is Red Hat. Unlike
MySQL, which owns the copyrights for its software, Red Hat creates and pro-
vides its own distribution of Linux. In addition, Red Hat provides training, edu-
cation, documentation, and support for its Linux distribution. In other words,
Red Hat provides a service for non-expert computer users by handling the
compilation of stable, updated, and prepackaged software suites to be distrib-
uted to users. In some ways, then, Red Hat behaves similarly to a proprietary

Introduction: Open Source Software and the Digital Commons  19

software provider, except that it does not own the intellectual property rights
for the software it sells and services. Rather, the company sells and provides its
own Linux distribution, which it can do because of the open licensing model
of Linux.

Whereas the first three business models are solely related to FLOSS, the
remaining two rely on a hybrid of both open and proprietary software. The
fourth model is a hybrid of both proprietary and open software that relies on
vertical development with FLOSS. Vertical development means using open
source software as a base upon which proprietary software can be built. One
of the major corporations that uses this model is Google. In fact, Google does
not sell its software at all; it develops and maintains its own software in-house,
while selling services provided by its software to other customers. Of course,
Google’s search engine is proprietary, but Google uses the Linux core to sup-
port its proprietary search services.

The final model is a hybrid of proprietary and open software, but one in
which the company relies on horizontal arrangements. This is the business
model that lies at the heart of this book project. In these relationships, for-
profit corporations become involved in open source projects. Drawing from
Fogel (2005), Deek and McHugh (2008) claim that the reasons for corporate
involvement are diverse, but include everything from spreading ‘the burden,
cost, and risk of software development across multiple enterprises to allowing
companies to support open source projects that play a supportive or comple-
mentary role to their own commercial products’ (277). IBM is one example of
this type of business model. For example, IBM’s WebSphere application, which
enables end-users to create their own applications, was built using the Apache
web server, which is open source. Thus, by supporting open source projects
like Apache, IBM is indirectly supporting its own interests. Furthermore, IBM
directly competes with Microsoft as a platform for applications. Because IBM
supports Linux, it is not only investing in the reliability of its own products but
may simultaneously weaken Microsoft’s market position, especially because
Linux is also a direct competitor of Microsoft.

In sum, then, this section has discussed how FLOSS has been used in differ-
ing ways by drawing on the typology developed by Deek and McHugh (2008).
The most fruitful area of study for the purposes of this project was the hybrid
open/proprietary model that relies on horizontal arrangements, although other
projects are discussed, like MySQL, which represents other types of business
strategies. The corporations that rely on horizontal arrangements are most
interesting because of their direct involvement in FLOSS projects. Thus, these
companies need to maintain a good relationship with the broader FLOSS com-
munity. When the norms of the community are violated by a company, the
community can abandon a project, which can effectively end commons-based
production on the project. In this sense, the FLOSS community leverages its
collective labour power against undue corporate influence in its commons-
based resources. This was the case when the Oracle Corporation acquired Sun

20  Incorporating the Digital Commons

Microsystems. This case will be discussed in greater detail in Chapter 5. For
now, however, it is important to note the two different examples of companies
using hybrid horizontal agreements to two different ends. In the case of IBM,
the company maintained a relatively stable relationship with the open source
community. In the other, Oracle overstepped its bounds by violating the norms
of the community. As more and more corporations become involved in FLOSS
projects, the relationships that exist between the community and the corpora-
tions that rely on their collective labour power will be subject to changes.

1.4.  FLOSS as Digital Commons

The seemingly contradictory relationship between FLOSS communities and
corporations is further exacerbated by the fact that FLOSS has consistently been
held up as the primary example of a digital commons. In medieval England, the
commons referred to a portion of land owned by the lord of the manor, which
certain tenants had the right to use for their needs. These rights included the
right to cultivate soil, produce crops, feed livestock, and other activities. The
concept has since been expanded from this very specific meaning to encompass
any resource that is owned by a community or a resource that may be accessed
by a broader community of people.

In tracing the roots of scholarship on the commons, most scholars book-
mark the work of Elinor Ostrom (2005; 1990). The narrative often begins with
Ostrom’s work, and focuses on how her ideas developed and influenced subse-
quent generations of scholars.

While Ostrom is a towering figure in scholarship on the commons, this sim-
ple narrative tends to obfuscate the broader history and context within which
Ostrom’s work is situated. Locher (2016) clarifies this history by demonstrating
how Ostrom’s work can be contextualised within a broader history of scholarly
debates within economic, political, and anthropological scholarship concerned
with the best way to achieve development. These debates were concerned with
the role of the state, the market, and local communities in the project of devel-
opment during the post-World War II period. This scholarship can be linked
with the United States’ international development projects through its flagship
institution, USAID, in the 1970s–80s.

Two assumptions in the approach to development dominated this period.
One was the assumption of the ‘tragedy of the commons’ or the fallacy of col-
lective action, based primarily on the work of Garrett Hardin (1968). Hardin
argued that the commons were ultimately unsustainable because they were
at risk of overexploitation as members of the community acted in their self-
interest to maximise personal gain. Thus, there was a fallacy in the logic of
collective action; it was simply impossible for communities to govern collective
resources without overexploiting them. The second assumption was that the
liberal technocratic state ought to be the central agent in development through

Introduction: Open Source Software and the Digital Commons  21

economic planning and coordinating large-scale development projects. This
assumption was driven by the success of the New Deal and the welfare state in
the post-war period. As such, the model was viewed as the primary means for
developing countries in the Global South, where traditional practices would
give way to modernisation to boost economic productivity.

During the 1970s, these assumptions were challenged by development
anthropology, which analysed ‘adaptive socio-ecological strategies’ used by
local communities to ensure the survival of ecological resources (Locher 2016,
313). Often, these decision-making strategies were situated within complex
systems of customs and social rules that developed from local communities’
historical experiences with their broader environment. Challenges to these
assumptions continued in the 1980s as neoliberal economics emerged as an
alternative to welfare state capitalism. Informed by rational choice theory,
which privileged calculating and efficient economic decision-making by profit-
maximising individuals, the goal was to unleash productive capacity in the pri-
vate sector through deregulation and privatisation. Neoliberal doctrine thus
argued for dismantling state regulation and withdrawing the state from social
provision. As such, neoliberalism represented not just an economic doctrine
but also ‘an ethic in itself, capable of acting as a guide for all human action, and
substituting for all previously existing ethical beliefs’ (Treanor, 2005: n.p.).

It was within this context that Ostrom’s scholarship, in collaboration with
others, sought to illuminate the ways that local communities govern common-
pool resources outside of the binary of either state provision or market rela-
tions. For example, Hess and Ostrom (2007) argued against the tragedy of the
commons thesis by focusing primarily on two points: first, Hardin assumes
that the sheep herders are acting according to the principles of neoclassical
economics and are individually acting in their self-interest rather than allow-
ing for forms of common governance, whereby concessions are made to the
other sheep herders. Second, Hardin frames the issue within the binary choice
between socialism and capitalism. However, the framing is fallacious for a
couple of reasons. The commons under feudalism were owned by a private
individual and not the state. Furthermore, Ostrom (1990) demonstrates how
different types of commons can be governed collectively so individual short-
term gains can be compromised for the long-term survival of the common
resource. In effect, Ostrom (1990) provided some nuance to the way that we
understand commons, especially because they were often placed in a binary
opposition that was representative of Cold War-era assumptions about social
development: either state provision of common property (socialism) or private
property ownership (capitalism).

Ostrom focused on the diverse ways that different commons are managed
by those communities that claim some sort of association to the resource. The
types of common-pool resources governed in this way vary, but the initial focus
was on natural resources like fisheries, grazing pastures, groundwater basins,
and irrigation systems. Later, Hess and Ostrom (2007) would expand the study

22  Incorporating the Digital Commons

of the commons to non-tangible resources like knowledge and information.
Table 1.3 illustrates different types of property by providing a simple matrix
of two factors: rivalry and excludability. Rivalry refers to the extent to which a
resource is finite or requires reproduction. Highly rivalrous goods tend to be
finite objects like apples, which need to be planted again to reproduce the crop,
while low rivalry goods tend to be intangible goods that can be reproduced
without much additional cost, like ideas, information, or knowledge. Exclud-
ability refers to the extent to which an owner of such goods can exclude others
from accessing or using that good. Highly excludable goods are protected by
private property rights, whereas goods with low excludability may be used by
anyone. Following from these terms, the matrix for rivalry and excludability
would look something like this:

Table 1.3: Typology of Property, adapted from Hess and Ostrom (2007) and
Frischmann (2012).

Excludability
High Low

Rivalry High Individual Property
(finite resource)

Common Property
(infrastructure)

Low Intellectual Property
(books, music,
consulting)

Knowledge Commons or
Digital Commons
(language, knowledge, code, free software)

Within this typology, FLOSS is positioned as a knowledge or digital com-
mons. Digitised knowledge – in the form of source code, README files,
software packages, and the shared documentation required in collaborative
production – is freely available for anyone to use and at no additional cost for
reproduction. One of the unique characteristics of free software as digital com-
mons is that it avoids the free-rider problem, whereby someone who consumes
or uses a resource does not give back to the community. Even if a user of FLOSS
projects does not have the capability to modify code, that person can still con-
tribute to the community simply by using the software. As an example, con-
sider someone using the Linux-based operating system, Ubuntu. That person
would not need to pay for Ubuntu or any of the software included with the
operating system, but the person can still use programs and report any flaws
or ‘bugs’ they encounter when using the software. These can be reported back
to the development community so someone within the community can work
on fixing the issue. Ultimately, the fix to the software can be submitted to the
project manager for inclusion in a subsequent release of the software, or the
fix may be distributed as an update to all users. This process is reflective of the
adage ‘with many eyes, all bugs are shallow’ (Raymond, 2000) which makes it
possible for the programs and operating system to maintain a high quality over
time. In effect, the use of free software serves as a form of quality control.

Introduction: Open Source Software and the Digital Commons  23

Thus, free software may be positioned as a digital commons. However,
there are different approaches for understanding the ontology of the com-
mons. Antonios Broumas (2017a) offers a useful framework for understanding
these differences when he identifies four different approaches: resource-based,
property-based, relational/institutional, and processual. Ostrom’s (1990)
approach tends to position commons as resources or resource systems that are
shared by a group of people, which make them susceptible to social dilemmas.
In property-based approaches the collective property of the commons is differ-
entiated from private and public property. Institutional/relational approaches
attempt to account for a ‘wider set of instituted social relationships between
communities and resources’ (Broumas, 2017a: 1509; see also Dardot and Laval,
2019). Finally, in a processual approach, ‘commons are defined as fluid systems
of social relationships and sets of social practices for governing the (re)produc-
tion of, access to, and use of resources’ (Broumas, 2017a: 1509). In the proces-
sual approach, commons are understood as a process or a state of becoming.
This process has also been summarised by Linebaugh (2008) when he proposed
the use of commoning as a verb, which will be discussed in greater detail in
the following chapter. For the time being, however, it is worth noting my own
understanding of the commons tends to fall more clearly within the proces-
sual or dialectical understanding of the commons. This approach is also nicely
summarised by Broumas (2017a) when he explains the complex interaction
that takes place between a producing subject and its interrelationship with an
external objective environment:

the interaction of subject and object takes the form of a subject/object,
an entity that preserves certain elements of subject and object, eliminates
others, and sublates the status of such an entity through the emergence
of novel properties that did not exist in its generating entities (1510).

In building on this general discussion of how free software and the digital
commons can be understood through different approaches, the following
section will outline one of the primary threats to the commons, which is
enclosure. I offer a clarification of why I have opted for a different term to
describe the complex dynamics taking place between FLOSS communities
and corporations.

1.4.1.  Incorporation vs. Enclosure

Within certain approaches to understanding the commons – most notably the
property-based approach – the commons are generally held in contradistinc-
tion to private property. In other words, once the commons become commodi-
fied or privatised, they cease to be commons and are in the service of capital.
Even within more recent work on the revolutionary potential of the commons

24  Incorporating the Digital Commons

and commoning activities, the commons are positioned as a potential alterna-
tive to capitalism (see Dardot and Laval, 2019). The process by which commons
become transformed into private property is known as enclosure. Histori-
cally, the enclosure of common land in England took place in varying degrees
between the 15th century and the 19th century.8 Enclosure took various forms
throughout this period, including voluntary enclosures, forced enclosure, par-
liamentary legislation, and others. Throughout this process, ownership of com-
mon land was transferred to private owners, who then claimed the right to
restrict access to the land. This effectively ended the open field system, whereby
commoners held traditional rights to use open fields for feeding livestock,
farming, or harvesting from the land. While historians still debate the extent to
which enclosure exacerbated class divisions and played an integral role in the
development of capitalism in general, the process nonetheless affected the rela-
tionship between commoners, capitalists, and the commonly held resources
that once provided a means of subsistence for commoners. Moreover, the
state played a crucial role in facilitating enclosure through the Enclosure Acts,
which were passed between the 18th and 19th centuries in England and Wales
(see Polanyi, 2001).

The enclosure of common land was accomplished by literally erecting fences
around previously open fields. Enclosure of knowledge commons, however,
depends on restricting access or prohibiting certain uses of informational
resources. James Boyle (2003) refers to the process of enclosing the knowl-
edge commons as the Second Enclosure Movement, whereby intellectual
property rights restrict access to those things which were once considered
common property.

Similarly, Mark Andrejevic (2007) uses the term ‘digital enclosure’ to refer to
the process by which two distinct classes are formed online: ‘those who control
privatised interactive spaces (virtual or otherwise), and those who submit to
particular forms of monitoring to gain access to goods, services, and conveni-
ences’ (3). In other words, Internet users, as a class, have nothing to sell but their
data, which serves as a form of value production for Internet Service Providers
(ISPs), which represent a class that controls the means of digital production.
In this sense, the ISPs can restrict access to their sites unless users agree to the
Terms of Service (ToS) or End User Licensing Agreement (EULA). These non-
negotiable contracts place restrictions on how users may interact with the site.
The effect of these agreements is to enclose informational resources, which are
controlled by ISPs. This type of value capture has also been critiqued in debates
about digital labour (see Jarrett, 2016; Fuchs, 2015; Scholz, 2013), which will be
discussed further in the following chapter.

In this book, I use the term ‘incorporation’ rather than ‘enclosure’. The term
‘enclosure’ implies either a physical barrier or other restriction (i.e. intellec-
tual property rights) placed upon the commons. In effect, the ‘enclosure’ of
digital commons typically refers to the process of imposing higher degrees of
excludability on the collective resource. However, as the case studies in this

Introduction: Open Source Software and the Digital Commons  25

book demonstrate, corporations have developed unique ways of transform-
ing the products and processes of commons-based peer production into com-
mercial offerings without placing restrictions on FLOSS communities’ access
to their common resources. This is qualitatively different from other forms of
‘enclosure’ discussed above. For this reason, I have opted for the term ‘incor-
poration’ because I think it more accurately describes what is happening when
corporations get involved in FLOSS projects, and this will be made clear by
the case studies provided in subsequent chapters. Incorporation is generally
defined as the inclusion of something as part of the whole, but it also carries
the specific legal definition of formally establishing an organisation as a corpo-
ration. In what follows, however, I discuss one more notable contribution for
understanding the dynamics between FLOSS communities and corporations.

1.4.2.  Commons-Based Peer Production

The work of Yochai Benkler (2006) is useful for understanding the broader
social dynamics at work in communities of peer producers as well as how those
communities intersect with existing institutions. One of the most notable con-
tributions in this regard is his concept of commons-based peer production and
its consequences for a broader set of social relationships. Benkler (2006) argues
that commons-based peer production constitutes a new form of organisation
that is ‘radically decentralized, collaborative, and nonproprietary; based on
sharing resources and outputs among widely distributed, loosely connected
individuals who cooperate with each other without relying on either market
signals or managerial commands’ (60). Benkler positions social production in
general and peer production specifically in contradistinction to market-based
production, arguing that these forms of production constitute a form of non-
market production. While these spheres are not mutually exclusive, Benkler
argues that diverse forms of non-market production, like FLOSS, have the
capability to influence market production.

Peer production can challenge market-based production in at least a couple
of ways. First, peer production can develop products that will compete directly
with those produced by commercial firms. In this case, the commercial firm
has a few different options: compete, do nothing, or adopt and adapt. If the
firm chooses to compete, it will be required to somehow create a better product
than that offered by the nonmarket rival, although this may come at consider-
able cost to the firm. Alternatively, the firm can do nothing. In this case, the
firm is basically relying on the belief that its products are superior to the non-
market option and that the non-market option will not gain additional market
share. This is a risky strategy for the commercial firm. If the non-market option
does gain an increasing share of the market, the commercial firm, or at least its
product that directly competes with the peer-produced option, runs the risk of
becoming obsolete. The third option is to adapt to the changing forces in the

26  Incorporating the Digital Commons

market by adopting some of the strategies of the non-market forces. This type
of strategic reorientation to non-market forces can have the consequence of
altering the basic structure of an organisation. As Benkler (2006) notes:

As the companies that adopt this strategic reorientation become more
integrated into the peer-production process itself, the boundary of the
firm becomes more porous. Participation in the discussions and gov-
ernance of open source development projects creates new ambiguity as
to where, in relation to what is ‘inside’ and ‘outside’ of the firm bound-
ary, the social process is (125).

Altering the firm’s position in relation to peer production, which exists outside
the firm, arguably offers a higher form of risk for the firm. The firm gives up a
certain level of control over the production process. The traditional view of a
firm’s control over its informational resources or, more specifically, knowledge,
is that knowledge can be viewed as an asset to be managed as an investment
(Machlup, 1962). However, the peer production process in general is far more
innovative and efficient than centralised production, including outside the
realm of software production (Von Hippel, 2005).

Fritz Machlup (1962) was one of the first scholars to propose that knowl-
edge could serve as an economic resource, and his work was one of the first
to popularise the idea of the information society. However, knowledge and
information are typically viewed from a supply-side perspective, especially in
economics literature that treats these factors as investment costs for the firm.
Arguing from an alternative perspective, Frischmann (2012) suggests that we
can view knowledge, information, and cultural resources as a form of intel-
lectual infrastructure. Doing so positions these resources as ‘basic inputs into
a wide variety of productive activities,’ which ‘often produce public and social
goods that generate spillovers that benefit society as a whole’ (Frischmann
2012, xii). Such an argument resonates nicely with the arguments in favour of
promoting commons-based peer production for enabling greater innovation
(Benkler, 2006; Von Hippel, 2005). By framing knowledge and information as
an infrastructural component of social development, protecting the knowl-
edge commons becomes crucially important to the survival of commons-based
peer production.

The concept of the commons is useful for thinking about informational
resources. Given the increasing interconnectivity between people across vast
spatial boundaries with the ability to communicate and collaborate in online
environments, maintaining a base of commonly held resources that can be
used for peer-production remains a central concern for facilitating more open
and democratic forms of communication. This is particularly the case because
the commons are subjected to the threat of enclosure or incorporation, which
can threaten a community’s rights of access to the commons or the collective
governance of the commons.

Introduction: Open Source Software and the Digital Commons  27

1.4.3.  Summarising Different Approaches to the Commons

The previous sections introduced the commons and commons-based peer pro-
duction. Those sections drew heavily from the work of two scholars: Elinor
Ostrom and Yochai Benkler. However, these scholars take different approaches
to their ontological understanding of the commons. Drawing from Broumas’s
(2017a) framework, I positioned Ostrom’s work as a resource-based ontology of
the commons. This is because Ostrom began her analysis with the collectively
governed resource, then examined the ways that communities governed those
resources. The value of Ostrom’s scholarship, then, was to provide a framework
for understanding how communities can manage common resources outside
of market relations or state provision. Rather than offering a prescriptive argu-
ment for how all communities ought to govern common resources, Ostrom’s
framework accounts for the diverse and varied ways that communities establish
adaptable institutions of governance for managing complex problems. As such,
Ostrom’s project builds a ‘bottom-up’ approach for understanding community
governance as well as the community’s relationship to common-pool resources.

The work of Yochai Benkler (2006) can also be understood within the
emergence of the commons paradigm, although his approach differs from
Ostrom. Benkler’s ontological positioning of the commons falls more within
the relational/institutional approach, as defined by Broumas (2017a). Such an
approach abstracts from simply focusing on communities or resources, and
instead focuses on the social relations and structures that exist between the
two. In this regard, his work focuses on the broader implications of the digi-
tal commons for economics, politics, and culture. Ultimately, he explores the
greater degrees of freedom, autonomy, and creativity that are made possible by
digital technologies, including the ways in which digitally networked practices
of production would alter the relationship between communities and capital-
ist firms. In this regard, Benkler’s work is also more conducive to a critical or,
in Broumas’s terms, a processual or dialectical, understanding of the dynamics
existing between FLOSS communities and corporations.

Broumas (2017b) also offers another framework for differentiating between
social democratic and critical theories of the intellectual commons that is useful
in this regard. Although his framework was used to discuss the intellectual com-
mons, the framework may also be mapped onto the digital commons. Accord-
ing to Broumas, social democratic theories of the commons ‘employ political
economic methodologies to analyse the dynamics that unfold between the
commons, the market and the state with the aim to propose reconfigurations of
these relations which will best serve social welfare’ (103). Such theorists argue
that by making progressive changes to existing structures, we can bring about a
more just and egalitarian society. As it concerns the digital commons, the goal
is to build repositories and platforms for commons-based knowledge and peer-
to-peer production that can, in turn, bring about greater degrees of personal
freedom as well as democratic decision-making (Bauwens 2005; Benkler 2006).

28  Incorporating the Digital Commons

In the framework visualised in Table 1.4 above, Broumas (2017b) examines
some of the foundational characteristics of each approach, focusing on episte-
mology, agency, structure, internal/external dynamics, normative criteria, and
social change. Of particular interest in Table 1.4 is the relationship between
the external dynamics and social change sections. The section on external
dynamics in the table represents a large portion of the subsequent chapters,
in which I explore the relationship between capitalism and the commons. One
of the pressing questions for FLOSS specifically but for the commons more
generally is whether these movements are capable of constituting alternatives
to capitalism. Indeed, some recent scholarship by Massimo De Angelis (2017)
specifically attempts to frame the commons as an alternative value system that
is emerging from within capitalism but also one that has the potential to usher
in a post-capitalist future, and this will be discussed in greater detail in the fol-
lowing chapter.

My goal for the next chapter is to specifically outline the contours of a critical
political economy of the digital commons. To begin the transition to that task,
however, the final section of this introduction discusses some of the methodol-
ogy used by critical political economists in general and in this study specifically.

1.5.  A Note on Methodology

The following quote from Marx (1845) comes from a section of The German
Ideology that discusses the essence of historical materialism:

Table 1.4: Social Democratic and Critical Theories of the Commons (Broumas,
2017b: 121).

Social Democratic
Theories

Critical Theories

Epistemology Political Economy Critical Political Economy
Agency Social Individuals Social Intellect
Structure Productive Community Community of Struggle
Internal Dynamics Bottom-Up/Top-Down

Emergence
n/a

External Dynamics Co-Existence of Commons
with Capital

Commons/Capital
Antagonism and
Sublation

Normative Criteria Deontological [reformist] Deontological
[subversive]

Social Change The Commons as Substitute
for the Welfare State

The Commons as
Alternative to Capitalism

Introduction: Open Source Software and the Digital Commons  29

Empirical observation must in each separate instance bring out empiri-
cally, and without any mystification and speculation, the connection of
the social and political structure with production. The social structure
and the State are continually evolving out of the life-process of definite
individuals, but of individuals, not as they may appear in their own or
other people’s imagination, but as they really are; i.e. as they operate,
produce materially, and hence as they work under definite material
limits, presuppositions and conditions independent of their will (Marx,
1998, 41).

The quote represents a methodological approach to inquiry that is guided by
assumptions about how reality can be understood and described. The quote
also nicely summarises the goals of researchers working within the critical
political economy of communication – that is, to connect the definite processes
of material production with broader social and political structures. Most often,
the inquiries of critical political economists of communication are directed at
large corporations that hold extensive market power and the ability to influ-
ence the production, distribution, exhibition of, or access to, communication
resources. In the process of investigation, the aim of critical political econo-
mists is to empirically investigate the material operations of corporations and
connect those operations to the broader social system. The connections made
to the social system can be situated within national boundaries while account-
ing for the attendant institutions (religious, legal, cultural, etc.) that encourage
or discourage certain types of behaviour, but can also be made across those
boundaries (internationally, regionally, globally).

By making these connections, political economists search for the general ten-
dencies of capitalism rather than seeking to establish absolute laws. This allows
the inquiry to remain open to the possibility of contradictory factors, while
also allowing for an account of diverse practices both within and across media
industries. Indeed, the contradictory factors provide the illuminating moments
for critical researchers, particularly because they provide opportunity for cri-
tique and resistance. To this end, critical political economists of communication
have provided important critiques of corporations, especially the ways in which
they operate in conjunction with the general tendencies of a broader capitalist
system. As Meehan (1999) notes, ‘critical scholars share an ethical obligation to
produce knowledge that accurately describes the media and reveals the hidden
dynamics whereby media corporations attempt to commercialise and control
expression in service to advertisers and ultimately to capital’ (162).

To search for these ‘hidden dynamics’, the current study employed a critical
interpretive methodological approach. Maxwell (2003) describes this approach
as used by Herbert I. Schiller, a pioneering scholar working within the critical
political economy of communication tradition. When working from a critical
perspective, one situates research findings within broader bodies of knowledge
and looks for disjunctures or contradictions arising from within the field of

30  Incorporating the Digital Commons

study. These contradictions or disjunctures can provide germane moments for
research, from which previously accepted understandings can be challenged
and refined. In this sense, CPEC scholars resist interpreting research findings
according to their face value or as prima facie evidence. Rather, the research
findings are brushed against the grain of alternative bodies of knowledge
to situate the results within a broader set of relationships. Similarly, Mosco
(2009) describes his epistemological stance as being constitutive. That is, criti-
cal political economy scholars resist causal, linear determinations as well as
the assumption that units of analysis are fully formed wholes. Instead, criti-
cal political economists favour an epistemological position that is based on
mutually constitutive processes, which act on one another throughout various
stages of formation. In this sense, the approach is dialectical in that it consid-
ers both particular and more general phenomena as part of a totality of pro-
cesses. These concerns are carried with the researcher throughout the research
process, regardless of what type of evidence is being investigated or how it is
being gathered.

To facilitate this type of investigation, critical political economists use a vari-
ety of methods. However, the selection of method is often driven by the amount
of access that the researcher has to the subject being studied. When direct access
to corporations is available, critical political economists rely on research meth-
ods such as interviewing, participant observation, ethnographic methods, and
other methods that allow for direct observation of the life-processes of definite
individuals as they operate or produce materially. In turn, these observations
can be linked with the ‘definite material limits, presuppositions and conditions
independent of their will’ (Marx 1998: 41). When we do not have direct access
to corporations, critical political economists rely on documentary evidence
of corporate operations and the material production taking place within the
corporation. Most often, this data comes from documents that are produced
by and about the corporation. To that end, the following section discusses the
specific methods used in this study.

FLOSS projects depend on extensive and accurate documentation to make
the development of projects run effectively and efficiently, and these docu-
ments are made publicly available so that other developers can work on the
project. The source code is one form of documentation, which enables users to
understand how a project works, but many FLOSS projects also contain credits
files, licensing disclosures, README files, and other documents that provide
essential information to users. This information, as well as the information
found on publicly available discussion lists, was combined with my experiences
using Linux and attending a variety of different events and meetings focused
on FLOSS, including local LUG meetings and the Open Source Convention
(OSCON). The aim of these documentary and first-hand experiences was to
understand the dynamics between the corporations and the community of
software developers, specifically how the latter negotiate their relationship with
those corporations.

Introduction: Open Source Software and the Digital Commons  31

The advantage of researching FLOSS communities is that nearly all FLOSS
projects have unique forums, bulletin boards, or wikis dedicated to provid-
ing documentation and facilitating communication about the project. These
sources typically contain repositories of the project itself, but they also offer
community discussion and historical data about the project’s development.
This, in turn, can provide documentary evidence of ongoing and past events
in a way that is open to the public. For example, the Fedora Project, which
is discussed in Chapter 4, features a wiki that contains extensive documenta-
tion about the project, including news, events, recent changes, user guides, and
links to various sub-projects associated with the main Fedora Project. Similar
sources can be found for all the FLOSS projects discussed in this study.

This introductory chapter identified the central concerns of this project by
highlighting the seemingly contradictory goals of free and open source soft-
ware communities and capitalist firms. Furthermore, I situated FLOSS histori-
cally by discussing some of the foundational moments in both the development
of software as well as the rise of free software specifically. This discussion also
included a consideration of FLOSS’s cultural significance. Finally, I outlined
the specific methodological approach used in the study. Now that the broad
outlines and contours of the study have been established, the following chap-
ter discusses more specifically the theoretical frameworks used to understand
the complex relationships between FLOSS communities, their commons-based
peer production, and capitalist accumulation.

Notes

	 1	 A photo of the moth that was removed from the machine is available
from the Naval Historical Center at https://www.history.navy.mil/our-
collections/photography/numerical-list-of-images/nhhc-series/nh-series/
NH-96000/NH-96566-KN.html

	 2	 There is a longer history of computing research at Harvard that traces back
to the 1930s, including Vannevar Bush’s differential analyzer and Claude
Shannon’s electronic Boolean algebra. Shannon is also well known within
the field of communication studies for his landmark, A Mathematical The-
ory of Communication, which was published in 1948. However, research on
computing at Harvard became specifically focused on artificial intelligence
in the late 1950s.

	 3	 The GNU Manifesto is available at http://www.gnu.org/gnu/manifesto.html
(last accessed 4 January 2019).

	 4	 The use of the combined term ‘FLOSS’ is mostly pragmatic, as I am inter-
ested in exploring dynamics between the communities producing a free
and/or open source software project and those corporations that sponsor
or otherwise use that software. I’m interested in these dynamics regardless
of whether those communities identify as free software communities, open

https://www.history.navy.mil/our-collections/photography/numerical-list-of-images/nhhc-series/nh-series/NH-96000/NH-96566-KN.html
https://www.history.navy.mil/our-collections/photography/numerical-list-of-images/nhhc-series/nh-series/NH-96000/NH-96566-KN.html
https://www.history.navy.mil/our-collections/photography/numerical-list-of-images/nhhc-series/nh-series/NH-96000/NH-96566-KN.html
http://www.gnu.org/gnu/manifesto.html

32  Incorporating the Digital Commons

source communities, or some combination thereof. In certain places in the
book, I specify one or the other when a distinction will be important. Oth-
erwise, I use the FLOSS acronym for more general discussion.

	 5	 The supercomputer at the Oak Ridge National Laboratory is known as Sum-
mit and was built by IBM. When this computer took over the top position
as the world’s fastest supercomputer in June 2018, it marked the first time
that a computer in the United States held that position since November
2012. In the interim, the top position was held by computers in China.

	 6	 The text of the GNU General Public License (GPL) can be found at http://
www.gnu.org/copyleft/gpl.html (last accessed 4 January 2019).

	 7	 The Creative Commons Licenses can be found at http://creativecommons.
org/licenses/ (last accessed 4 January 2019).

	 8	 A detailed account of the English enclosures is not provided here, but those
interested in a more detailed treatment should see Neeson, 1993; Thomp-
son, 1966; and Marx, 1906, especially Chapter 27: ‘Expropriation of the
Agricultural Population from the Land,’ which is freely available at http://
www.marxists.org/archive/marx/works/1867-c1/ch27.htm.

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://creativecommons.org/licenses
http://creativecommons.org/licenses
http://www.marxists.org/archive/marx/works/1867-c1/ch27.htm
http://www.marxists.org/archive/marx/works/1867-c1/ch27.htm

	Half Title
	Series Page
	Title Page
	Copyright
	Contents
	CHAPTER 1 Introduction
	1.1. The Argument and Plan for the Book
	1.2. Situating Free (Libre) and Open Source Software
	1.3. Open Source Business Models
	1.4. FLOSS as Digital Commons
	1.5. A Note on Methodology

	CHAPTER 2 Toward a Critical Political Economy of the Digital Commons
	2.1. Political Economy of Communications
	2.2. Critical Theories of the Digital Commons
	2.3. Summary

	CHAPTER 3 Shifting Toward the Commons�: Microsoft and Competing Models of Software Production
	3.1. The Rise of Microsoft 1975-1990
	3.2. Microsoft in the 1990s
	3.3. The United States vs. Microsoft Corporation
	3.4. The Halloween Documents
	3.5. Shifting Toward the Commons
	3.6. Why Open Source? Why Now?

	CHAPTER 4 From the Commons to Capital�: Red Hat, Inc. and the Incorporation of Free Software
	4.1. The Political Economy of Red Hat, Inc.
	4.2. Red Hat’s Core Commodities and Intellectual Property
	4.3. From the Commons to Capital
	4.4. The Future of Red Hat

	CHAPTER 5 Resisting Incorporation and Reclaiming the Commons�: The Case of Oracle and Sun Micro
	5.1. The Oracle Corporation and Sun Microsystems
	5.2. Protecting the Commons

	CHAPTER 6 Conclusion
	6.1. Major Findings
	6.2. Case Studies
	6.3. On the Benefit of the Commons Paradigm
	6.4. Political Organisation from Below
	6.5. Boundary Commoning
	6.6. Commons Praxis
	6.7. Concluding Thoughts on Capital and the Commons

	References
	Index

